Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation.
نویسندگان
چکیده
Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases.
منابع مشابه
Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements.
Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead t...
متن کاملMultivalent Peptide–Nanoparticle Conjugates for Influenza‐Virus Inhibition
To inhibit binding of the influenza A virus to the host cell glycocalyx, we generate multivalent peptide-polymer nanoparticles binding with nanomolar affinity to the virus via its spike protein hemagglutinin. The chosen dendritic polyglycerol scaffolds are highly biocompatible and well suited for a multivalent presentation. We could demonstrate in vitro that by increasing the size of the polyme...
متن کاملExploring monovalent and multivalent peptides for the inhibition of FBP21-tWW
The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein-protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus o...
متن کاملMultivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel–Crafts alkylations
The first immobilization of a MacMillan's first generation organocatalyst onto dendritic support is described. A modified tyrosine-based imidazolidin-4-one was grafted to a soluble high-loading hyperbranched polyglycerol via a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction and readily purified by dialysis. The efficiency of differently functionalized multivalent organocatalysts 4a...
متن کاملDendritic polyglycerol anions for the selective targeting of native and inflamed articular cartilage
The destruction of articular cartilage is a critical feature in joint diseases. An approach to selectively target the damaged tissue is promising for the development of diagnostic and therapeutic agents. We herein present the interaction of dendritic polyglycerol (dPG) anions with native and inflamed cartilage. Confocal laser scanning microscopy revealed the inert character of dPG and low funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 46 شماره
صفحات -
تاریخ انتشار 2010